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Motivation

This poster focuses on metric spaces and a related theorem that might possibly be refined to a statement of equivalence.

Definitions

Definition 1 . (Metric Space) A metric space is a pair (X , d) where X is a set and d is a metric on X (distance function) that is a function defined on X × X such
that for all x , y , z ∈ X , we have:

I d(x , y) ≥ 0
I d(x , y) = 0 if and only if x = y
I d(x , y) = d(y , x) (Symmetry)
I d(x , z) ≤ d(x , y) + d(y , z) (Triangle Inequality)

This definition generalizes the Euclidean metric on Euclidean space. Curious examples include C ([0, 1],R), the space of all real-valued continuous functions on [0, 1] with
corresponding metric d(x , y) = max

t∈[0,1]
|x(t)− y(t)| and the space of ordered triples of zeroes and ones where the metric d(x , y), known as Hamming distance is the number

of places where x and y have different entries.

Definition 2 . (Isometry) Let X = (X , d) and x̃ = (X̃ , d̃) be two metric spaces. Then a mapping T : X → T̃ is said to be an isometry [1] if T preserves distance, that
is, for all x , y ∈ X , d(x , y) = d̃(Tx ,Ty). A space X is said to be isometric with X̃ if there exists a bijective isometry of X onto X̃ .

It is easy to see from this definition that an isometry must be an injective (one-to-one). Thus, surjective (onto) isometry is equivalent to bijective isometry. A bijection is a
mapping that is one-to-one and onto. Clearly, every metric space is isometric to itself via identity mapping. Concrete examples of bijective isometries include translation
and rotation in Euclidean space.

Definition 3 .(Group) A group is a set G equipped with a binary operation ◦, (G , ◦) such that:
I x ◦ y ∈ G for each x , y ∈ G (Closure)
I x ◦ (y ◦ z) = (x ◦ y) ◦ z for each x , y , z ∈ G (Associativity)
I there exists an element e such that x ◦ e = x = e ◦ x for each x ∈ G (Identity)
I for each x ∈ G , there exists x∗ ∈ G such that x ◦ x∗ = e = x ◦ x∗ (Inverse)

The uniqueness of identity element is immediate and for each x ∈ G , the corresponding inverse element is unique. Common examples of groups include the additive group
of integers, (Z,+) and the general linear group over R, i.e. the group of all invertible n × n matrices of real numbers with matrix multiplication as the group operation,
denoted GL(n,R). In view of the previous definition, the set of all bijective isometries on a metric space X , denoted Isom(X ,X ), is a group with composition of isometries
as the operation. It is a subgroup of the permutation group on X (each permutation on X can be thought of as a bijection).

Definition 4 .(Group Homomorphism, Isomorphism) Let (G1, ◦) and (G2, ·) be two groups. A group homomorphism is a mapping φ : (G1, ◦)→ (G2, ·) such that for
every a, b ∈ G1, φ(a ◦ b) = φ(a) · φ(b). A group isomorphism is a bijective group homomorphism. If φ : (G1, ◦)→ (G2, ·) is an isomorphism, then G1 and G2 are
isomorphic, denoted G1 ' G2.

A homomorphism preserves algebraic structure. It is immediate that φ(eG1
) = eG2

(identity is mapped to identity) if φ is a homomorphism. An example of a group
homomorphism is a φ : G → {e}, where φ(g) = e for each g ∈ G , φ is isomorphism only if G is trivial group. The additive group of integers modulo 4, (Z/4Z ,+) is
isomorphic to the multiplicative group of fourth roots of unity, ({ω ∈ C : ω4 = 1},×).

Main Theorem

Theorem: Let X = (X , d) and X̃ = (X̃ , d̃) be two metric spaces. If X and X̃ are isometric, then Isom(X ,X ) ' Isom(X̃ , X̃ ).

Proof: By assumption, there exists a bijective isometry T : X → X̃ . Define φ : Isom(X ,X )→ Isom(X̃ , X̃ ) where φ(U) = TUT−1, it is easy to verify φ is a group
homomorphism and its inverse is given by φ−1(Ũ) = T−1ŨT . Thus, φ is an isomorphism and hence the conclusion.

The converse does not hold. A counterexample is X = {1, 2, 3} ⊆ N and X̃ = {1, 2} ⊆ N, both are equipped with the induced Euclidean metric d , where
d(a, b) = |a − b|. Clearly, Isom(X ,X ) ' Isom(X̃ , X̃ ) ' C2, the cyclic group of order 2 but X and X̃ are not isometric.

What conditions do we need to make this theorem a statement of equivalence? By Banach-Stone theorem [2], if X and X̃ are compact Hausdorff spaces, there exists a
homeomorphism from X to X̃ if C (X ,R) and C (X̃ ,R) are isometric. We might consider the space of continuous functions on X in subsequent research.

Counting Isometries on Hamming Space

In view of Definition 1 and 2, we are interested to find the number of (bijective) isometries on the Hamming space Hn (with Hamming distance as metric) of n-bit binary
codes, which amounts to 2n × n!. The reasoning is as follows: let T be such isometry, denote the code with all entries being 0 by 0̃. Without loss of generality, the image
of 0̃ under T , T (0̃) can take on any of the 2n binary codes. Let ei be the n-binary code with the i -th entry being one and zero everywhere. Before we elaborate on, define
x
⊕

y to be the sum of binary codes modulo 2 in each bit. For instance, 111
⊕

011 = 100. Now for each ei , we have the freedom to define T (ei) = T (0̃) + eki (mind the
restriction of isometry). There are n! outcomes for the images of e1,2,...,n. Now the images of the remaining codes under T are determined, by addition of some
combination of ei ’s (0̃ and all the ei ’s are the building blocks). We leave it for interested readers to justify. For example, if n = 3, T (000) = 110,
T (100) = T (000)

⊕
010 = 100, T (010) = 110

⊕
001 = 111, then T (001) = 110

⊕
100 = 010 and T (110) = T (010)

⊕
010 = 101 and so forth.

Since the set of isometries forms a group, it is natural to try to classify this group up to isomorphism [3]. It turns out Isom(Hn,Hn) ' An o Bn (semidirect product)

An = {T ∈ Isom(Hn,Hn) : T (0̃) = 0̃} ' Sn and Bn = {T ∈ Isom(Hn,Hn) : Tx = x
⊕

T (0̃) for all x ∈ Hn} '
⊕

i=1,··· ,n
(Z/2Z)i

where Sn is the permutation group on n elements and
⊕

i=1,··· ,n(Z/2Z)i is the direct sum of n copies of additive group Z/2Z. Clearly An defines a group. We note that for

a general T ∈ Isom(Hn,Hn), T (x
⊕

y) = T (0̃)
⊕

Tx
⊕

Ty and for each T ∈ Bn, T 2(0̃) = 0̃. One could show Bn is a group and Bn = {T ∈ Isom(Hn,Hn) : T 2 = id}
where id refers to the identity map. Moreover, Bn is a normal subgroup of Isom(Hn,Hn) (An is not). It means that for each U ∈ Bn, TUT−1 ∈ Bn for any
T ∈ Isom(Hn,Hn). Finally, it is easy to verify that An ∩ Bn = {id} and Isom(Hn,Hn) = AnBn (every isometry can be written as composition of isometries from An and Bn).
These are sufficient to give semidirect product.
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