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Motivation

This poster focuses on metric spaces and a related theorem that might possibly be refined to a statement of equivalence.

Definitions

Definition 1 . (Metric Space) A metric space is a pair (X, d) where X is a set and d is a metric on X (distance function) that is a function defined on X x X such
that for all x,y,z € X, we have:

» d(x,y)>0
=0 if and only if x =
d(y, x) (Symmetry)

d(x,y)+ d(y, z) (Triangle Inequality)

d(x,y) =
d(x;y)
d(x, z)

I/\ |

This definition generalizes the Euclidean metric on Euclidean space. Curious examples include C([0, 1],R), the space of all real-valued continuous functions on [0, 1] with

corresponding metric d(x, y) = m[ax]|x( ) — y(t)| and the space of ordered triples of zeroes and ones where the metric d(x, y), known as Hamming distance is the number
0,1

of places where x and y have different entries.

Definition 2 . (Isometry) Let X = (X, d) and X = (X, d) be two metric spaces. Then a mapping T : X — T is said to be an isometry [1] if T preserves distance, that
is, for all x,y € X, d(x,y) =d(Tx, Ty). A space X is said to be isometric with X if there exists a bijective isometry of X onto X.

It is easy to see from this definition that an isometry must be an injective (one-to-one). Thus, surjective (onto) isometry is equivalent to bijective isometry. A bijection is a
mapping that is one-to-one and onto. Clearly, every metric space is isometric to itself via identity mapping. Concrete examples of bijective isometries include translation
and rotation in Euclidean space.
Definition 3 .(Group) A group is a set G equipped with a binary operation o, (G, o) such that:

» xoy € G for each x,y € G (Closure)

» xo(yoz)=(xoy)ozforeach x,y,z € G (Associativity)

» there exists an element e such that x o e = x = e o x for each x € G (ldentity)

» for each x € G, there exists x* € G such that x o x* = e = x o x* (Inverse)

The uniqueness of identity element is immediate and for each x € G, the corresponding inverse element is unique. Common examples of groups include the additive group
of integers, (Z, +) and the general linear group over R, i.e. the group of all invertible n X n matrices of real numbers with matrix multiplication as the group operation,
denoted GL(n,RR). In view of the previous definition, the set of all bijective isometries on a metric space X, denoted Isom(X, X), is a group with composition of isometries
as the operation. It is a subgroup of the permutation group on X (each permutation on X can be thought of as a bijection).

Definition 4 .(Group Homomorphism, Isomorphism) Let (Gy, 0) and (G, -) be two groups. A group homomorphism is a mapping ¢ : (G, 0) — (G, -) such that for
every a,b € Gy, ¢(ao b) = ¢(a) - ¢(b). A group isomorphism is a bijective group homomorphism. If ¢ : (Gy,0) — (Gy, -) is an isomorphism, then G; and G, are
isomorphic, denoted G; ~ G.

A homomorphism preserves algebraic structure. It is immediate that ¢(eg,) = eg, (identity is mapped to identity) if ¢ is a homomorphism. An example of a group

homomorphism is a ¢ : G — {e}, where ¢(g) = e for each g € G, ¢ is isomorphism only if G is trivial group. The additive group of integers modulo 4, (Z/4Z,+) is
isomorphic to the multiplicative group of fourth roots of unity, ({w € C: w* = 1}, x).

Main Theorem

Theorem: Let X = (X, d) and X = (X, d) be two metric spaces. If X and X are isometric, then Isom(X, X) =~ Isom(X, X).
U)

Proof: By assumption, there exists a buectlve isometry T : X — X. Define ¢ : Isom(X, X) — Isom(X, X) where ¢(
homomorphism and its inverse is given by ¢~ }(U) = T~ LUT. Thus, ¢ is an isomorphism and hence the conclusion.

The converse does not hold. A counterexample is X = {1,2,3} C N and X = {1,2} C N, both are equipped with the induced Euclidean metric d, where
d(a, b) = |a — b|. Clearly, Isom(X, X) ~ Isom(X, X) =~ G, the cyclic group of order 2 but X and X are not isometric.

What conditions do we need to make this theorem a statement of equivalence? By Banach-Stone theorem [2], if X and X are compact Hausdorff spaces, there exists a
homeomorphism from X to X if C(X,R) and C(X,R) are isometric. We might consider the space of continuous functions on X in subsequent research.

= TUT 1, it is easy to verify ¢ is a group

Counting Isometries on Hamming Space

In view of Definition 1 and 2, we are interested to find the number of (bijective) isometries on the Hamming space H, (with Hamming distance as metric) of n-bit binary
codes, which amounts to 2” x n!. The reasoning is as follows: let T be such isometry, denote the code with all entries being 0 by 0. Without loss of generality, the image
of 0 under T, T(0) can take on any of the 2" binary codes. Let e; be the n-binary code with the i-th entry being one and zero everywhere. Before we elaborate on, define
x @ y to be the sum of binary codes modulo 2 in each bit. For instance, 111 @ 011 = 100. Now for each e;, we have the freedom to define T(e;) = T(0) + e (mind the
restriction of isometry). There are n! outcomes for the images of e, ,. Now the images of the remaining codes under T are determined, by addition of some
combination of e;'s (6 and all the ¢;'s are the building blocks). We leave it for interested readers to justify. For example, if n =3, T(000) = 110,

T(100) = T(000) ) 010 = 100, T(010) = 110 001 = 111, then T(001) = 110D 100 = 010 and T(110) = T(010) €D 010 = 101 and so forth.

Since the set of isometries forms a group, it is natural to try to classify this group up to isomorphism [3]. It turns out Isom(H,, H,) >~ A, x B, (semidirect product)

An={T € Isom(H,, H,) : T(0) =0} ~ S, and B, = {T € Isom(H,, H,) : Tx = x@) T(0) for all x € H,} ~ €D (Z/27);
=1, .n

where S, is the permutation group on n elements and ,_; .. ,(Z/2Z); is the direct sum of n copies of additive group Z/2Z. Clearly A, defines a group. We note that for

a general T € Isom(H,, H,), T(x@y) = T(0)P TxP Ty and for each T € B,, T%(0) = 0. One could show B, is a group and B, = {T € Isom(H,, H,) : T?> = id}
where id refers to the identity map. Moreover, B, is a normal subgroup of lsom(Hn, H,) (A, is not). It means that for each U € B,, TUT ! € B, for any

T € Isom(H,, H,). Finally, it is easy to verify that A, N B, = {id} and Isom(H,, H,) = A,B, (every isometry can be written as composition of isometries from A, and B,).
These are sufficient to give semidirect product.
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