Odyssey Research Programme

Title: Metric Spaces and Isometries
Student: Loo Dong Lin
Supervisor: Dr. Tang Wee Kee
Divison of Mathematical Sciences, SPMS, NTU

Motivation

This poster focuses on metric spaces and a related theorem that might possibly be refined to a statement of equivalence.

Definitions

Definition 1. (Metric Space) A metric space is a pair (X, d) where X is a set and d is a metric on X (distance function) that is a function defined on $X \times X$ such that for all $x, y, z \in X$, we have:

- $d(x, y) \geq 0$
- $d(x, y)=0$ if and only if $x=y$
$\rightarrow d(x, y)=d(y, x)$ (Symmetry)
- $d(x, z) \leq d(x, y)+d(y, z)$ (Triangle Inequality)

This definition generalizes the Euclidean metric on Euclidean space. Curious examples include $C([0,1], \mathbb{R})$, the space of all real-valued continuous functions on $[0,1]$ with corresponding metric $d(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|$ and the space of ordered triples of zeroes and ones where the metric $d(x, y)$, known as Hamming distance is the number of places where x and y have different entries.
Definition 2 . (Isometry) Let $X=(X, d)$ and $\tilde{x}=(\tilde{X}, \tilde{d})$ be two metric spaces. Then a mapping $T: X \rightarrow \tilde{T}$ is said to be an isometry [1] if T preserves distance, that is, for all $x, y \in X, d(x, y)=\tilde{d}(T x, T y)$. A space X is said to be isometric with \tilde{X} if there exists a bijective isometry of X onto \tilde{X}.
It is easy to see from this definition that an isometry must be an injective (one-to-one). Thus, surjective (onto) isometry is equivalent to bijective isometry. A bijection is a mapping that is one-to-one and onto. Clearly, every metric space is isometric to itself via identity mapping. Concrete examples of bijective isometries include translation and rotation in Euclidean space.
Definition 3 .(Group) A group is a set G equipped with a binary operation $\circ,(G, \circ)$ such that:

- $x \circ y \in G$ for each $x, y \in G$ (Closure)
$\triangleright x \circ(y \circ z)=(x \circ y) \circ z$ for each $x, y, z \in G$ (Associativity)
- there exists an element e such that $x \circ e=x=e \circ x$ for each $x \in G$ (Identity)
- for each $x \in G$, there exists $x^{*} \in G$ such that $x \circ x^{*}=e=x \circ x^{*}$ (Inverse)

The uniqueness of identity element is immediate and for each $x \in G$, the corresponding inverse element is unique. Common examples of groups include the additive group of integers, $(\mathbb{Z},+)$ and the general linear group over \mathbb{R}, i.e. the group of all invertible $n \times n$ matrices of real numbers with matrix multiplication as the group operation, denoted $G L(n, \mathbb{R})$. In view of the previous definition, the set of all bijective isometries on a metric space X, denoted Isom (X, X), is a group with composition of isometries as the operation. It is a subgroup of the permutation group on X (each permutation on X can be thought of as a bijection).
Definition 4.(Group Homomorphism, Isomorphism) Let $\left(G_{1}, \circ\right)$ and $\left(G_{2}, \cdot\right)$ be two groups. A group homomorphism is a mapping $\phi:\left(G_{1}, \circ\right) \rightarrow\left(G_{2}, \cdot\right)$ such that for every $a, b \in G_{1}, \phi(a \circ b)=\phi(a) \cdot \phi(b)$. A group isomorphism is a bijective group homomorphism. If $\phi:\left(G_{1}, 0\right) \rightarrow\left(G_{2}, \cdot\right)$ is an isomorphism, then G_{1} and G_{2} are isomorphic, denoted $G_{1} \simeq G_{2}$.
A homomorphism preserves algebraic structure. It is immediate that $\phi\left(e_{G_{1}}\right)=e_{G_{2}}$ (identity is mapped to identity) if ϕ is a homomorphism. An example of a group homomorphism is a $\phi: G \rightarrow\{e\}$, where $\phi(g)=e$ for each $g \in G, \phi$ is isomorphism only if G is trivial group. The additive group of integers modulo $4,(Z / 4 Z,+)$ is isomorphic to the multiplicative group of fourth roots of unity, $\left(\left\{\omega \in \mathbb{C}: \omega^{4}=1\right\}, \times\right)$.

Main Theorem

Theorem: Let $X=(X, d)$ and $\tilde{X}=(\tilde{X}, \tilde{d})$ be two metric spaces. If X and \tilde{X} are isometric, then $\operatorname{Isom}(X, X) \simeq \operatorname{Isom}(\tilde{X}, \tilde{X})$.
Proof: By assumption, there exists a bijective isometry $T: X \rightarrow \tilde{X}$. Define $\phi: \operatorname{Isom}(X, X) \rightarrow \operatorname{Isom}(\tilde{X}, \tilde{X})$ where $\phi(U)=T U T^{-1}$, it is easy to verify ϕ is a group homomorphism and its inverse is given by $\phi^{-1}(\tilde{U})=T^{-1} \tilde{U} T$. Thus, ϕ is an isomorphism and hence the conclusion.
The converse does not hold. A counterexample is $X=\{1,2,3\} \subseteq \mathbb{N}$ and $\tilde{X}=\{1,2\} \subseteq \mathbb{N}$, both are equipped with the induced Euclidean metric d, where $d(a, b)=|a-b|$. Clearly, $\operatorname{Isom}(X, X) \simeq \operatorname{Isom}(\tilde{X}, \tilde{X}) \simeq C_{2}$, the cyclic group of order 2 but X and \tilde{X} are not isometric
What conditions do we need to make this theorem a statement of equivalence? By Banach-Stone theorem [2], if X and \tilde{X} are compact Hausdorff spaces, there exists a homeomorphism from X to \tilde{X} if $C(X, \mathbb{R})$ and $C(\tilde{X}, \mathbb{R})$ are isometric. We might consider the space of continuous functions on X in subsequent research.

Counting Isometries on Hamming Space

In view of Definition 1 and 2, we are interested to find the number of (bijective) isometries on the Hamming space H_{n} (with Hamming distance as metric) of n-bit binary codes, which amounts to $2^{n} \times n!$. The reasoning is as follows: let T be such isometry, denote the code with all entries being 0 by $\tilde{0}$. Without loss of generality, the image of $\tilde{0}$ under $T, T(\tilde{0})$ can take on any of the 2^{n} binary codes. Let e_{i} be the n-binary code with the i-th entry being one and zero everywhere. Before we elaborate on, define $x \bigoplus y$ to be the sum of binary codes modulo 2 in each bit. For instance, $111 \bigoplus 011=100$. Now for each e_{i}, we have the freedom to define $T\left(e_{i}\right)=T(\tilde{0})+e_{k_{i}}(m i n d ~ t h e ~$ restriction of isometry). There are n ! outcomes for the images of $e_{1,2, \ldots, n}$. Now the images of the remaining codes under T are determined, by addition of some
combination of $e_{i}^{\prime} s\left(\tilde{0}\right.$ and all the e_{i} 's are the building blocks). We leave it for interested readers to justify. For example, if $n=3, T(000)=110$,
$T(100)=T(000) \bigoplus 010=100, T(010)=110 \bigoplus 001=111$, then $T(001)=110 \bigoplus 100=010$ and $T(110)=T(010) \bigoplus 010=101$ and so forth
Since the set of isometries forms a group, it is natural to try to classify this group up to isomorphism [3]. It turns out $\operatorname{lsom}\left(H_{n}, H_{n}\right) \simeq A_{n} \rtimes B_{n}$ (semidirect product)

$$
A_{n}=\left\{T \in \operatorname{Isom}\left(H_{n}, H_{n}\right): T(\tilde{0})=\tilde{0}\right\} \simeq S_{n} \text { and } B_{n}=\left\{T \in \operatorname{lsom}\left(H_{n}, H_{n}\right): T x=x \bigoplus T(\tilde{0}) \text { for all } x \in H_{n}\right\} \simeq \bigoplus_{i=1, \cdots, n}(\mathbb{Z} / 2 \mathbb{Z})_{i}
$$

where S_{n} is the permutation group on n elements and $\bigoplus_{i=1, \ldots, n}(\mathbb{Z} / 2 \mathbb{Z})_{i}$ is the direct sum of n copies of additive group $Z / 2 \mathbb{Z}$. Clearly A_{n} defines a group. We note that for a general $T \in \operatorname{Isom}\left(H_{n}, H_{n}\right), T(x \bigoplus y)=T(\tilde{0}) \bigoplus T x \bigoplus T y$ and for each $T \in B_{n}, T^{2}(\tilde{0})=\tilde{0}$. One could show B_{n} is a group and $B_{n}=\left\{T \in \operatorname{lsom}\left(H_{n}, H_{n}\right): T^{2}=i d\right\}$ where id refers to the identity map. Moreover, B_{n} is a normal subgroup of $\operatorname{Isom}\left(H_{n}, H_{n}\right)\left(A_{n}\right.$ is not). It means that for each $U \in B_{n}, T U T^{-1} \in B_{n}$ for any $T \in \operatorname{Isom}\left(H_{n}, H_{n}\right)$. Finally, it is easy to verify that $A_{n} \cap B_{n}=\{i d\}$ and $\operatorname{Isom}\left(H_{n}, H_{n}\right)=A_{n} B_{n}$ (every isometry can be written as composition of isometries from A_{n} and $\left.B_{n}\right)$. These are sufficient to give semidirect product.

Acknowledgements

I would like to extend my gratitude to the Odyssey Programme for this wonderful research experience and my supervisor for his guidance.

References

E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, 3-9, 41 (1989).
R. J. Fleming, J. E. Jamison, Isometries on Banach Spaces: Function spaces, Monographs and Survey in Pure and Applied Maths. 25-26, (2003)
N. M. Nashash, On The Automorphism Groups of Some Linear Codes, Deanship of Graduate Studies and Scientific Research Master Program of Mathematics, 31-37 (2019).

