Odyssey Research Programme

Title: Metric Spaces and Isometries
Student: Loo Dong Lin
Supervisor: Dr. Tang Wee Kee
Divison of Mathematical Sciences, SPMS, NTU

Motivation

Definitions

This poster focuses on metric spaces and a related theorem that might possibly be refined to a statement of equivalence.

Definition 1. (Metric Space) A **metric space** is a pair (X, d) where X is a set and d is a metric on X (distance function) that is a function defined on $X \times X$ such that for all $x, y, z \in X$, we have:

- \rightarrow $d(x,y) \geq 0$
- d(x,y) = 0 if and only if x = y
- \rightarrow d(x, y) = d(y, x) (Symmetry)
- ► $d(x,z) \le d(x,y) + d(y,z)$ (Triangle Inequality)

This definition generalizes the Euclidean metric on Euclidean space. Curious examples include $C([0,1],\mathbb{R})$, the space of all real-valued continuous functions on [0,1] with corresponding metric $d(x,y) = \max_{t \in [0,1]} |x(t) - y(t)|$ and the space of ordered triples of zeroes and ones where the metric d(x,y), known as Hamming distance is the number of places where x and y have different entries.

Definition 2. (Isometry) Let X = (X, d) and $\tilde{x} = (\tilde{X}, \tilde{d})$ be two metric spaces. Then a mapping $T: X \to \tilde{T}$ is said to be an **isometry** [1] if T preserves distance, that is, for all $x, y \in X$, $d(x, y) = \tilde{d}(Tx, Ty)$. A space X is said to be **isometric** with \tilde{X} if there exists a bijective isometry of X onto \tilde{X} .

It is easy to see from this definition that an isometry must be an injective (one-to-one). Thus, surjective (onto) isometry is equivalent to bijective isometry. A bijection is a mapping that is one-to-one and onto. Clearly, every metric space is isometric to itself via identity mapping. Concrete examples of bijective isometries include translation and rotation in Euclidean space.

Definition 3. (Group) A **group** is a set G equipped with a binary operation \circ , (G, \circ) such that:

- $x \circ y \in G$ for each $x, y \in G$ (Closure)
- $x \circ (y \circ z) = (x \circ y) \circ z$ for each $x, y, z \in G$ (Associativity)
- b there exists an element e such that $x \circ e = x = e \circ x$ for each $x \in G$ (Identity)
- for each $x \in G$, there exists $x^* \in G$ such that $x \circ x^* = e = x \circ x^*$ (Inverse)

The uniqueness of identity element is immediate and for each $x \in G$, the corresponding inverse element is unique. Common examples of groups include the additive group of integers, $(\mathbb{Z},+)$ and the general linear group over \mathbb{R} , i.e. the group of all invertible $n \times n$ matrices of real numbers with matrix multiplication as the group operation, denoted $GL(n,\mathbb{R})$. In view of the previous definition, the set of all bijective isometries on a metric space X, denoted Isom(X,X), is a group with composition of isometries as the operation. It is a subgroup of the permutation group on X (each permutation on X can be thought of as a bijection).

Definition 4. (Group Homomorphism, Isomorphism) Let (G_1, \circ) and (G_2, \cdot) be two groups. A group **homomorphism** is a mapping $\phi: (G_1, \circ) \to (G_2, \cdot)$ such that for every $a, b \in G_1$, $\phi(a \circ b) = \phi(a) \cdot \phi(b)$. A group **isomorphism** is a bijective group homomorphism. If $\phi: (G_1, \circ) \to (G_2, \cdot)$ is an isomorphism, then G_1 and G_2 are isomorphic, denoted $G_1 \simeq G_2$.

A homomorphism preserves algebraic structure. It is immediate that $\phi(e_{G_1}) = e_{G_2}$ (identity is mapped to identity) if ϕ is a homomorphism. An example of a group homomorphism is a $\phi: G \to \{e\}$, where $\phi(g) = e$ for each $g \in G$, ϕ is isomorphism only if G is trivial group. The additive group of integers modulo 4, (Z/4Z, +) is isomorphic to the multiplicative group of fourth roots of unity, $(\{\omega \in \mathbb{C} : \omega^4 = 1\}, \times)$.

Main Theorem

Theorem: Let X=(X,d) and $\tilde{X}=(\tilde{X},\tilde{d})$ be two metric spaces. If X and \tilde{X} are isometric, then $\mathit{Isom}(X,X)\simeq \mathit{Isom}(\tilde{X},\tilde{X})$.

Proof: By assumption, there exists a bijective isometry $T: X \to \tilde{X}$. Define $\phi: Isom(X,X) \to Isom(\tilde{X},\tilde{X})$ where $\phi(U) = TUT^{-1}$, it is easy to verify ϕ is a group homomorphism and its inverse is given by $\phi^{-1}(\tilde{U}) = T^{-1}\tilde{U}T$. Thus, ϕ is an isomorphism and hence the conclusion.

The converse does not hold. A counterexample is $X = \{1, 2, 3\} \subseteq \mathbb{N}$ and $\tilde{X} = \{1, 2\} \subseteq \mathbb{N}$, both are equipped with the induced Euclidean metric d, where d(a,b) = |a-b|. Clearly, $Isom(X,X) \simeq Isom(\tilde{X},\tilde{X}) \simeq C_2$, the cyclic group of order 2 but X and \tilde{X} are not isometric.

What conditions do we need to make this theorem a statement of equivalence? By Banach-Stone theorem [2], if X and \tilde{X} are compact Hausdorff spaces, there exists a homeomorphism from X to \tilde{X} if $C(X,\mathbb{R})$ and $C(\tilde{X},\mathbb{R})$ are isometric. We might consider the space of continuous functions on X in subsequent research.

Counting Isometries on Hamming Space

In view of Definition 1 and 2, we are interested to find the number of (bijective) isometries on the Hamming space H_n (with Hamming distance as metric) of n-bit binary codes, which amounts to $2^n \times n!$. The reasoning is as follows: let T be such isometry, denote the code with all entries being 0 by 0. Without loss of generality, the image of 0 under 0 under 0 under 0 can take on any of the 0 binary codes. Let 0 be the 0 be the n-binary code with the 0-th entry being one and zero everywhere. Before we elaborate on, define 0 under 0 to be the sum of binary codes modulo 2 in each bit. For instance, 0 under 0 under 0 to be the sum of binary codes modulo 2 in each bit. For instance, 0 under 0

Since the set of isometries forms a group, it is natural to try to classify this group up to isomorphism [3]. It turns out $\mathit{Isom}(H_n, H_n) \simeq A_n \rtimes B_n$ (semidirect product)

$$A_n = \{T \in \mathit{Isom}(H_n, H_n) : T(\tilde{0}) = \tilde{0}\} \simeq S_n \text{ and } B_n = \{T \in \mathit{Isom}(H_n, H_n) : Tx = x \bigoplus T(\tilde{0}) \text{ for all } x \in H_n\} \simeq \bigoplus_{i=1,\dots,n} (\mathbb{Z}/2\mathbb{Z})_i$$

where S_n is the permutation group on n elements and $\bigoplus_{i=1,\dots,n}(\mathbb{Z}/2\mathbb{Z})_i$ is the direct sum of n copies of additive group $Z/2\mathbb{Z}$. Clearly A_n defines a group. We note that for a general $T \in Isom(H_n, H_n)$, $T(x \bigoplus y) = T(\tilde{0}) \bigoplus Tx \bigoplus Ty$ and for each $T \in B_n$, $T^2(\tilde{0}) = \tilde{0}$. One could show B_n is a group and $B_n = \{T \in Isom(H_n, H_n) : T^2 = id\}$ where $Isom(H_n, H_n)$. Finally, it is easy to verify that $A_n \cap B_n = \{id\}$ and $Isom(H_n, H_n) = A_nB_n$ (every isometry can be written as composition of isometries from A_n and B_n). These are sufficient to give semidirect product.

Acknowledgements

I would like to extend my gratitude to the Odyssey Programme for this wonderful research experience and my supervisor for his guidance.

References

- E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, 3-9, 41 (1989).
- R. J. Fleming, J. E. Jamison, *Isometries on Banach Spaces: Function spaces*, Monographs and Survey in Pure and Applied Maths. **25-26**, (2003).
- N. M. Nashash, On The Automorphism Groups of Some Linear Codes, Deanship of Graduate Studies and Scientific Research Master Program of Mathematics, 31-37 (2019).